

C N Ravi et.al. Page 91

Jupiter Publications Consortium

Vol. 1(2), pp. 91-95, 28 Sep, 2015
ISSN Print : 2454-1435 © 2015 IJRMMAE
ISSN Online : 2454-1443 © 2015 IJRMMAE
http://www.ijrmmae.in

International Journal of Research in

Mechanical, Mechatronics and

Automobile Engineering

A Review on the Implementation of Deadlock Prevention using

Banker’s Algorithm

 C N Ravi, Dr. N Chinnaiyan

Associate Professor, Information Science and Engineering Department, New Horizon

College of Engineering, Bangalore, India,

ravicn@newhorizonindia.edu

S.Rajeswari, Shwetha K S, Baswaraju Swathi

Assistant Professor, Information Science and Engineering Department, New Horizon

College of Engineering, Bangalore, India,

rajeswaris@newhorizonindia.edu
Received 10, September 2015 | Accepted 21, September 2015

Abstract:— The deadlock avoidance procedure, Banker’s algorithm, was developed for
computer operating systems, an environment where very little information regarding the

future resource requirements of executing processes is known. Also, information on the

maximum resource claims for each of the regions can be extracted prior to process execution.

By inserting operating system calls when entering a new region for each process at runtime,

and applying the original banker’s algorithm for deadlock avoidance, this method has the
potential to achieve better resource utilization because information on the “localized

approximate maximum claims” is used for testing system safety.

Keywords:—Banker’s Algorithm, Deadlock, Deadlock avoidance, Workflow Scheduling.

I. INTRODUCTION

Deadlock-free operation is an important operational requirement in flexible manufacturing

systems (FMSs). In general, deadlock is the situation in which there exists a set of
concurrent processes with each process in the set awaiting an event that can be caused only

by another process in the set (Silbershatz and Peterson, 1991). A ubiquitous problem in

discrete event systems, deadlock results from various aspects of systems operations, such as

resource allocation and communications (Holt, 1972)[1]. In an FMS, deadlock is caused by

imprudent allocation of buffer space, tooling, and material handling equipment (Cho,

Kumaran, and Wysk, 1995).

The FMS controller, therefore, must incorporate some strategy for handling deadlocks;
otherwise continuing system operation cannot be guaranteed. The deadlock phenomenon has

been studied extensively in computer operating systems[2]. In these systems, executing

processes compete for computing resources such as I/O channels, disk space, and memory.

In contrast to computer operating systems, a part in an FMS visits a predictable sequence of

machines for processing, the part route. At each machine, the part requires a certain set of

resources (buffer space, cutting tools, etc.) to complete its processing before moving on to the

next machine. The objective of this paper is to be focus on various resources used in bankers

algorithms[3].

1. Detection and recovery. Every time a resource is requested or released, a check is made to
see if any deadlocks exist. If exist, some policy will be adopted to recover the system from

deadlock.

C N Ravi et.al. Page 92

Jupiter Publications Consortium

Vol. 1(2), pp. 91-95, 28 Sep, 2015
ISSN Print : 2454-1435 © 2015 IJRMMAE
ISSN Online : 2454-1443 © 2015 IJRMMAE
http://www.ijrmmae.in

International Journal of Research in

Mechanical, Mechatronics and

Automobile Engineering

2. Deadlock prevention, by structurally negating one of the four required deadlock

conditions. deadlocks will be impossible[4].

3. Dynamic avoidance by careful resource allocation: deadlock avoidance[5]. Make judicious

choices to assure that the deadlock point is never reached.

2. Data Structures Available:

k, there are k instances of resource type Rj available.

Max:

• n x m matrix.

• Maximum # of instances of each resource each process can request.

• If Max [i,j] = k, then process Pi may request at most k instances of resource type Rj.

Allocation:

• n x m matrix

• # instances of each resource type allocated to each process

• If Allocation[i,j] = k then Pi is currently allocated k instances of Rj..

Need:

1. n x m matrix

2. # instances of each resource type each process may need more of

3. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its task

4. Need [i,j] = Max[i,j] – Allocation [i,j].

Safety Algorithm:

1. Let Work and Finish be vectors of length m and n, respectively. Initialize: Work = Available

2. Finish [i] = false for i = 0, 1,2, …, n-1.

3. Find an i such that both:

 (a) Finish [i] = false

 (b) Needi ≤ Work

 If no such i exists, go to step 4.

3. Work = Work + Allocationi

 Finish[i] = true go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

C N Ravi et.al. Page 93

Jupiter Publications Consortium

Vol. 1(2), pp. 91-95, 28 Sep, 2015
ISSN Print : 2454-1435 © 2015 IJRMMAE
ISSN Online : 2454-1443 © 2015 IJRMMAE
http://www.ijrmmae.in

International Journal of Research in

Mechanical, Mechatronics and

Automobile Engineering

3. Resource-Request Algorithm for Process Pi :

Requesti = request vector for process Pi.

If Requesti [j] = k then process Pi wants k instances of resource type Rj. When resource

request made by Pi, the following occurs:

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error condition, since process has

exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must wait, since resources are not

available.

3. Pretend to allocate requested resources to Pi by modifying the state as follows: Available =

Available - Requesti;

Allocationi= Allocationi + Requesti;

Needi = Needi – Requesti;

If safe the resources are allocated to Pi.

 If unsafe Pi must wait, and the hold resource allocation state is restored

4. EXAMPLE OF BANKER’S ALGORITHM:

5 processes P1 through P5 3 resource types:

 A: 10 instances

 B: 5 instances

 C: 7 instances

Resource-allocation state at time T0:

AllocationMaxAvailable

 A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

The content of the matrix, Need is defined to be Max – Allocation.

Need

A B C

P0 7 4 3

C N Ravi et.al. Page 94

Jupiter Publications Consortium

Vol. 1(2), pp. 91-95, 28 Sep, 2015
ISSN Print : 2454-1435 © 2015 IJRMMAE
ISSN Online : 2454-1443 © 2015 IJRMMAE
http://www.ijrmmae.in

International Journal of Research in

Mechanical, Mechatronics and

Automobile Engineering

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

The system is in a safe state since the sequence < P1, P3, P0, P2, P4> satisfies safety criteria.

Example (cont.):

Now P1 requests 1 instance of A and 2 instances of C: Request1 (1, 0, 2)

 1.) Check that Request1 ≤ Available (1,0,2) ≤ (3,3,2) _ true (can immediately grant request)

2.) Now see if system is in safe state:

 Allocation Need Available

 A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety

requirement.

5. CONCLUSION

In this paper, we proposed an extension of the banker’s algorithm for deadlock avoidance.

Assuming that the control flow of the resource-related calls of each process forms a rooted

tree, we proposed a quadratic-time algorithm which decomposes these trees into regions and
computes the associated maximum resource claims, the extended banker’s algorithm has the

potential to improve the resource utilization while incurring low runtime overhead.

6. REFERENCES

[1] The Application and Evaluation of Banker’s Algorithm for Deadlock-Free Buffer Space

Allocation in Flexible Manufacturing Systems. The International Journal of Flexible

Manufacturing Systems, 10 (1998) Kluwer Academic Publishers, Boston.

[2] AnjuBala, Dr.Inderveer Chana, A Survey of Various Workflow Scheduling Algorithms in

Cloud Environment.2nd National Conference on Information and Communication Technology

(NCICT) 2011. Proceedings published in International Journal of Computer Applications®

(IJCA)

C N Ravi et.al. Page 95

Jupiter Publications Consortium

Vol. 1(2), pp. 91-95, 28 Sep, 2015
ISSN Print : 2454-1435 © 2015 IJRMMAE
ISSN Online : 2454-1443 © 2015 IJRMMAE
http://www.ijrmmae.in

International Journal of Research in

Mechanical, Mechatronics and

Automobile Engineering

[3] Sheau-DongLang, An Extended Banker’s Algorithm for Deadlock Avoidance. IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 3, MAY/JUNE 1999.

[4] Algoritmo del bankero.pdf

[5] https://www.computer.org/csdl/trans/ts/1999/03/e0428.html

