

Innovative Criterions for Job Shop Scheduling Problems

A Predominant Approach

Henok Mekonnen

Department of Mechanical Engineering, Jimma, Jimma Institute of Technology, Ethiopia

Received 10, Aug 2015 | Accepted 21, Aug 2015

1. ABSTRACT

Generally, Job Shop Scheduling Problem (JSSP) is an operational sequencing problem to process n jobs on m

machines in a given sequence so as to optimally utilize the resources by complete processing of all jobs in a

minimum possible

time. JSSP has belongs to the category of NP hard problems where the search space of the problem is (n!)
m

.

Several naturally inspired evolutionary techniques / methods have recently been developed to address these
problems to get near optimal solutions in a reasonable time period thus several unsolved / difficulty to solve
JSSPs became target for many researchers.

Some Traditional Optimization Techniques includes Priority Dispatch Rules, Efficient Methods solvable in

polynomial times. Enumerative methods and Mathematical formulation like Linear Programming, Mixed Linear

Programming, Lagrangian Relaxation, Branch and Bound and Disjunctive Graph techniques etc. the research has

been accelerated with applications of Nontraditional Techniques. Application of Artificial Intelligence, insertion

Algorithms, Bottleneck Heuristics, Neural Networks, Expert Systems and Local Search algorithms. Application

of Evolutionary Algorithms for scheduling found from mid 80s to till date. Genetic Algorithm, Variation in GAs,

PSO, ACO, BCO, Memetic Algorithm, Immune Algorithm and several Hybrid Algorithms. The BFO algorithms,

HS algorithms, IWO have been found applied in JSSP in the recent years.
More focus on the application of Non Traditional methods for JSSP is increasing compared to

traditional techniques. For the same cost and time non traditional methods yield better solutions compared to

traditional methods.
Hence, in this paper classical evolutionary algorithms namely Invasive weed optimization (IWO),

Bacterial Foraging Optimization (BFO) and Music Based Harmony Search principles and fine-tuned the

mechanisms to model and solve JSSP. Several Bench Mark instances available in OR library were thoroughly

tested to prove the efficiency of the proposed methods by selective and random generation of populations.

Two different types of population generations were considered

i) Random Population (RP): The initial population is randomly generated and applied to the algorithm

procedures and let us call such methods as PSO with RP, HSPO with RP, AIA with RP, HAIA with RP,

MBHS with RP,

 IMBHS with RP, BFO and IWO with RP.

ii) Selective Population: The initial Populations are generated using priority dispatching rules. A priority

 dispatching rule is a simple mathematical formula that, based on some processing parameters, specifies the priority

 of operations to be executed. 10 initial schedules i.e., populations are generated using 10 commonly used priority

 dispatching rules given in the Table 1 let us call these methods as PSO with SP, HSPO with SP, AIA with SP,

HAIA with SP, MBHS with SP, IMBHS with SP, BFO with SP and IWO with SP.

Vol. 1, Issue 2, pp 69-75 14,Aug, 2015

International Journal of

Research in Mechanical

Mechatronics and

Automobile Engineering

eISSN : 2454-1435 © 2015

pISSN : 2454-1443 © 2015

http://www.ijrmmae.in

http://www.ju.edu.et/jit/?q=node/190

P a g e | 76

 EXPRESSION DESCRIPTION

 Shortest Processing Time (SPT) The job with shortest time on machines selected.

 pi≤ pi+1≤ pi+2≤…………….≤ pn

 Longest Processing Time(LPT) The job with longest time on machines selected.

 pi≥ pi+1≥ pi+2≥…………….≥ pn

 Minimum Slack Time Per Time remaining until the due date – Processing time

 Operation(MINSOP) Remaining

 Minimum Due Date(MINDD) The job with earliest due date is processed first

 Di≤ Di+1≤ Di+2≤…………….≤ Dn

 Critical Ratio(CR) Remaining due date/Remaining processing time

 Most work remaining (MWKR) Select the operation associated with the job of the

 most work remaining to be processed

 Least work remaining(LWKR) Select the operation associated with the job of the

 least work remaining to be processed

 Shortest remaining Minimum Min(processing tine remaining- minimum processing

 Processing Time(SRMPT) time)

 Longest remaining Maximum Max(processing tine remaining- maximum processing

 Processing Time(LRMPT) time)

 RANDOM(random selection) Select the next job to be processed randomly.
Table.1: List of common Priority Dispatching rules used to generate the initial population.

The coding of these algorithms is done in MATLAB, optimized by speed, and run on Intel Core2Duo T6400

@ 2.00GHz and each algorithm was made to run 30 times on each problem of 250 Bench Mark Problem

Instances. In this chapter the results obtained by executing the above algorithm on 250 Bench Marking

Problems are reported only.

2. BENCHMARKPROBLEMS
To find the comparative merits of the various techniques and algorithms, one needs to test on the

bench mark problems. These benchmark problems are formulated by various authors, Fisher and Thompson,

1963 (FT) 3 problems of 3 different sizes: 6×6, 10×10, 20×5; Lawrence, 1984 (LA) 40 problems of 8

different sizes: 10×5, 15×5, 20×5, 10×10, 15×10, 20×10, 30×10 and 15×15; Adams Balas & Zawak, 1988

(ABZ) 5 problems of 2 different sizes: 10×10, 20×15; Applegate and Cook, 1991 (ORB) 10 problems of

10×10 size; Storer, Vaccari & Wu, 1992 (SWV) 20 problems of 3 different sizes: 20×10 , 20×15, 50×10;

Yamada and Nakano, 1992 (YN) 4 problems of 20×20 size; Taillard, 1993 (TA) 80 problems of 8 different

sizes: 15×15, 20×15, 20×20, 30×15, 30×20, 50×15, 50×20; Demirkol, Mehta & Uzsoy, 1998 (DMU) 80

problems of 8 different sizes: 20×15, 20×20, 30×15, 30×20, 50×15, 50×20, 100×20; Jacques Carlier , (CAR)

8 problems of 8 different sizes: 11×5, 13×4, 12×5, 14×4, 10×6, 8×9, 7×7, 8×8; and are freely available. In this

paper all the known 250 benchmark problems of JSSP have been taken into consideration for testing with the

algorithms being developed.

3. ALGORITHMS DEVELOPED

3.1. Particle Swarm optimization (PSO) Algorithm
One of the best evolutionary techniques for unconstrained continuous optimization is particle swarm

optimization (PSO) proposed by Kennedy and Eberhart (1995), inspired by social behavior of bird flocking or

fish schooling. PSO has been successfully used in different fields due to its ease of implementation and

computational efficiency. Particles move toward the pbest position and gbest position with each iteration. The

pbest position is the best position found by each particle so far. The gbest position is the best position found by

the swarm so far. The particle moves itself according to its velocity. For each particle k and dimension j, the

velocity and position of particles can be updated by the following equations:

P a g e | 77

Figure.1 Flowchart for Particle Swarm Optimization

3.2. Hybrid Particle Swarm Optimization (HPSO) Algorithm
PSO is a stochastic search algorithm; it is prone to inadequate global search-ability at the end of a run.

PSO may fail to find the required optima in cases when the problem to be solved is too complicated and complex.

The original PSO was designed for a continuous solution space. Simulated Annealing (SA) has certain

probability to avoid becoming trapped in a local optimum and the search process can be controlled by the cooling

schedule. By reasonably combining these two different search algorithms, we develop a general, fast and easily

implemented hybrid optimization algorithm called HPSO, it can be seen that PSO provides initial solution for SA

during the hybrid search process. Moreover, such HPSO can be applied to many combinatorial optimization

problems by simple modification. The psedudo code of HPSO is given on Figure.2.

3.3. Artificial Immune Algorithm (AIA)

Artificial Immune Systems are adaptive systems applied to problem solving which have been derived
from the principles, models and functions of the human immune system. The field of AIS was initially developed

in 1986 by J. D. Farmer et al. in their paper called ‘The Immune System, Adaptation and Machine Learning’ and

was followed by another paper by G.W. Hoffman called ‘A Neural Network Model Based on the Analogy with

the Immune System’. Artificial Immune Model is, a basic model with understanding of the Functioning of the

human immune system is essential. The human immune system is characterized by its adaptive and robust nature.

In Equations (3.1) and (3.2), is the velocity of the particle k on dimension j, and is the position of particle k on

dimension j. The is the pbest position of particle k on dimension j, and is the gbest position of the swarm

on dimension j. The inertia weight w is used to control exploration and exploitation. The particles maintain high
velocities with a larger w, and low velocities with a smaller w. The constants and are used to decide whether particles

prefer moving toward a pbest position or gbest position. The and are random variables between 0 and 1. The

process of working of PSO and its flow chart is shown in Figure.1.

P a g e | 78

This can be observed by considering a simple example of an infection attacking the body. The infection (or
antigen) attacking the body is countered by the defence mechanism called the antibody. The artificial immune

system was built on the following two principles of the immune system.
i. Clonal selection principle

ii. Affinity maturation principle
i. Clonal selection principle

Each schedule (antibody) has a makespan value that refers to the affinity value of that antibody. Affinity

value of each schedule is calculated from the affinity function. The affinity function is defined as
Affinity (p) = 1/makespan

From this relation, a lower makespan value gives a higher affinity value. Further the cloning of antibodies is done

directly proportional to their affinity function values. Therefore, there will be more clones of antibodies that have

lower makespan values than those with higher makespan values in the new generated clone population. An

affinity function is defined based on makespan values of the schedules. Also they have given a function to

calculate the number of clones that would be proliferated.

ii. Affinity maturation principle

The affinity maturation principle consists of a method namely mutation.

Mutation: A two phased mutation procedure were used for the generated clones.
a. Inverse mutation

 b. Pair wise interchange mutation

a. Inverse mutation: For a sequence s, let i and j be randomly selected two positions in the sequences. A

neighbour of s is obtained by inversing the sequence of jobs between i and j positions. If the makespan value of

the mutated sequence (after inverse mutation) is smaller than that of the original sequence (a generated clone

from an antibody), then the mutated one is stored in the place of the original one. Otherwise, the sequence will
be mutated again with random pair wise interchange mutation.

b. Pair wise interchange mutation: Given a sequence s, let i and j be randomly selected two positions in the

sequence s. A neighbour of s is obtained by interchanging the jobs in positions i and j. If the makespan value of

the mutated sequence (after pair wise interchange mutation) is smaller than that of the original sequence, then

store the mutated one in the place of the original one. In the case where the algorithm could not find a better

sequence after the two-mutation procedure, then it stores the original sequence (generated clone).
Figure.3 is the flowchart and gives the pseudo code of AIS algorithm for solving the job shop scheduling

problem. The possible schedules are represented by integer-valued sequences of length n (jobs). The n

elements of the strings are the jobs which will be sequenced. Therefore, the strings are composed of

permutations of n (jobs) elements. Those strings are accepted as antibodies of the AIS. The algorithm goes up

to solution by the evolution of these antibodies.

Figure. 3. Flow chart of artificial immune system algorithm

P a g e | 79

3.4. Hybrid Artificial Immune Algorithm (HAIA)
The hybrid algorithm based on AIS theory and PSO is described for the JSSP. Hybrid Artificial

Immune Algorithm adopts the antigens for finding optimum solutions efficiently. In this case antigen is a

potential solution and the algorithm helps the antigens to evolve and generate better population thus giving rise

to fitter antigens which represent competitive schedules.
To implement a basic artificial immune system, four decisions have to be made: encoding, similarity measure,

selection and mutation. Once an encoding has been fixed and a suitable similarity measure is chosen, the

algorithm will then perform selection and mutation, both based on the similarity measure, until stopping

criteria are met. The pseudo code showing the main procedures of the algorithm is shown in Figure.4 To

accelerate the convergence speed of the search algorithm, a neighbourhood search mechanism is formulated

especially for this problem

3.5. Invasive Weed Optimization (IWO) Algorithm
Invasive weed optimization (IWO), first designed and developed by Mehrabian and Lucas (2006), is a

relatively novel numerical stochastic optimization algorithm inspired from colonization of invasive weeds. The

algorithm is simple but has shown to be effective in converging to optimal solution by employing basic properties,

e.g. seeding, growth and competition, in a weed colony. A weed is any plant growing where it is not wanted;

any tree, vine, shrub or herb may qualify as a weed, in any specified geographical area, depending on the

situation. Weeds have shown a very robust and adaptive nature that renders them undesirable plants in

agriculture.

In D-dimensional search space, a weed which represents a potential solution of the objective function is

represented by W = (w1, w2,·· , wm) . Firstly, M weeds, called a population of plants, are initialized with

random growth position, and then each weed produces seeds depending on its fitness and the colony's lowest

fitness and highest fitness to simulate the natural survival of the fittest process. The number of seeds each plant

produce increases linearly from minimum possible seed production to its maximum. The generated seeds are

being distribution randomly in the search area by normal distribution with mean equal to zero and a variance

parameter decreasing over the number of iterations. By setting the mean equal to zero, the seeds are distributed

randomly such that they locate near to the parent plant and by decreasing the variance over time, the fitter

plants are grouped together and inappropriate plants are eliminated over times.

3.6. Bacterial Foraging Optimization (BFO) Algorithm
Bacterial Foraging Optimization (BFO) was first introduced by Passino inspired from the Swarm

Intelligence. Bacteria search for nutrients in a manner to maximize energy obtained per unit time. Individual

bacterium also communicates with others by sending signals. A bacterium takes foraging decisions after

considering two previous factors. The process, in which a bacterium moves by taking small steps while

searching for nutrients, is called chemotaxis and key idea of BFOA is mimicking chemotactic movement of

virtual bacteria in the problem search space. During foraging of the real bacteria, locomotion is achieved by a

set of tensile flagella. Flagella help an E.coli bacterium to tumble or swim, which are two basic operations

performed by a bacterium at the time of foraging. When they rotate the flagella in the clockwise direction,

each flagellum pulls on the cell. That results in the moving of flagella independently and finally the bacterium

tumbles with lesser number of tumbling whereas in a harmful place it tumbles frequently to find a nutrient

gradient. Moving the flagella in the counter clockwise direction helps the bacterium to swim at a very fast rate.

In the above- mentioned algorithm the bacteria undergoes chemotaxis, where they like to move towards a

nutrient gradient and avoid noxious environment. Generally the bacteria move for a longer distance in a

friendly environment.
Let us define a chemotactic step to be a tumble followed by a tumble or a tumble followed by a run.

Let j be the index for the chemotactic step. Let k be the index for the reproduction step. Let l be the index of

the elimination-dispersal event.
Also let P (j, k, l) { (j, k, l) | i 1,2,..., S} i = q = represent the position of each member in the

population of the S bacteria at the j-th chemotactic step, k-th reproduction step, and l-th elimination-dispersal

event. Here, let J (i, j, k, l) denote the cost at the location of the i-th bacterium i. Note that we will

interchangeably refer to J as being a “cost” (using terminology from optimization theory) and as being a

nutrient surface (in reference to the biological connections). For actual bacterial populations, S can be very

large (e.g., S =109), but p = 3. In our computer simulations, we will use much smaller population sizes and will

keep the population size fixed. BFOA, however, allows p > 3 so that we can apply the method to higher

dimensional optimization problems. The whole process is depicted in Figures.6.

P a g e | 80

REFERENCES

1. Bagheri, M. Zandieh, I. Mahdavi, M. Yazdani, An artificial immune algorithm for the flexible job -
shop scheduling problem Future Generation Computer Systems, In Press, Accepted Manuscript,

Available online 15 October 2009.
2. Colorni, M. Dorigo et V. Maniezzo, Distributed Optimization by Ant Colonies, actes de la première

conférence européenne sur la vie artificielle, Paris, France, Elsevier Publishing, 134-142, 1991.

3. El-Bouri, N. Azizi, S. Zolfaghari, A comparative study of a new heuristic based on adaptive memory

programming and simulated annealing: The case of job shop scheduling European Journal of

Operational Research, Volume 177, Issue 3, 16 March 2007, Pages 1894-1910.
4. R. Mallahzadeh,H. Oraizi and Z. Davoodi-Rad “Application of Invasive Weed Optimization

technique for antenna configuration” Progress in Electro-magnetic Research, PIER 79, 2008Pages

137-150
5. A.S Jain, S.Meeran Mascis, Dario Pacciarelli “DeterministicJob-shop scheduling : Past , Present and

Future” European Journal of Operational Research, Volume 113, 1999, Pages 390-434
6. Adil Baykasoğlu, Lale Özbakır, Türkay Dereli “Multiple Dispatching Rule based heuristic for Multi-

objective Scheduling of Job Shops using Tabu Search” 5th International Conference on Managing

Innovations in Manufacturing, September 2002
7. Anniruddha Basak, Siddharth Pal, Swagatam Das “A Modified Invasive Weed Optimization for

Time Modulated Linear antenna Array Synthesis ” istance- and Connectivity-based Node
Localization in Wireless Sensor Networks”, Engineering Applications of Artificial Intelligence, in

press, June 2012.
8. Blazewickz J (1996) ,“The job shop scheduling problem: Conventional and new solutions techniques”,

 Eur J Oper Res pp 931–30.
9. Blazewickz J (1996) ,“The job shop scheduling problem: Conventional and new solutions techniques”,

Eur J Oper Res pp 931–30.

10. Bou Shaala, A., Shouman, M.A., and Esheem.S, “Some Heuristic Rules for Job Shop Scheduling

Problem” Industrial and manufacturing systems engineering, Garyounis University, Libya.

11. Carlier J, Pison E (1989) ,“An algorithm for solving the job shop problem”, Manage Sci 35:164–176

12. Castro L. de and Timmis J., 2003. “Artificial Immune Systems as a Novel Soft Computing Paradigm”.

Soft

Computing Journal, vol. 7, Issue 7.
13. D.Y. Sha, Cheng-Yu Hsu, A hybrid particle swarm optimization for job shop scheduling problem

 Computers Industrial Engineering, Volume 51, Issue 4, December 2006, Pages 791-808.
14. Dam Scheduling: Geem, Z. W. “Optimal Scheduling of Multiple Dam System Using Harmony Search

Algorithm”, Lecture Notes in Computer Science, 2007.

15. Dasgupta, D., (1999), ‘An Overview of Artificial Immune Systems and Their Applications’, In Artificial

Immune Systems and Their Applications, D. Dasgupta (ed.), Springer-Verlag, pp. 3 – 21.

16. Ferdinando Pezzella, Emanuela Merelli “A tabu search method guided by shifting bottleneck for the

job shop scheduling problem” European Journal of Operational Research, Volume 120, Issue 2, 16

January 2000, Pages 297-310.
17. Heat exchanger design: Fesanghary, M., Damangir, E. and Soleimani, I. “Design optimization of

shell and tube heat exchangers using global sensitivity analysis and harmony search”, Applied

Thermal Engineering, In press.
18. Helena Ramalhinho Lourenço “Job-shop scheduling: Computational study of local search and large-

step optimization methods” European Journal of Operational Research, Volume 83, Issue 2, 8 June

1995, Pages 347-364.
19. K. Lee and Z. Geem, “A new meta-heuristic algorithm for continuous engineering optimization:

harmony search theory and practice”, Computer Methods in Applied Mechanics and Engineering

194, pp.3902-3933,2005.
20. K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE

Control Systems Magazine, vol. 22, no. 3, pp. 52–67, 2002.

21. K. Steinhöfel, A. Albrecht, C. K. Wong “Two simulated annealing-based heuristics for the job shop

scheduling problem”European Journal of Operational Research, Volume 118, Issue 3, 1 November

1999, Pages 524-548.
22. M. Chandrasekaran . P. Asokan . S. Kumanan . T. Balamurugan . S. Nickolas “Solving job shop

scheduling problems using artificial immune system” 8 February 2005 / Accepted: 30 July 2005 /

Published online: 3 January 2006 # Springer-Verlag London Limited 2006.
23. M. Dorigo et L.M. Gambardella, Ant Colony System : A Cooperative Learning Approach to the

P a g e | 81

Traveling Salesman Problem, IEEE Transactions on Evolutionary Computation, volume 1, numéro
1, pages 53-66, 1997.

24. M.Mahdavi, M.Fesanghary, E.Damangir, "An improved harmony search algorithm for solving
optimization problems", Applied Mathematics and Computation188 ,pp.1567–1579,2007.

25. M.Ramezani Ghalenoei, H.Hajmirsadeghi, C.Lucas “Discrete Invasive Weed Optimization and its

application to Co-operative multi-task assignment of UAVs” Comin prac. 48th IEEE conference on

Decision and Control, Dec 2009,in Press
26. Ritwik Giri ,Aritra Chowdhury, Arnob Ghosh “A Modified Invasive Weed Optimization for training

of feed forward neural networks”

27. Runwei Cheng, Mitsuo Gen, Yasuhiro Tsujimura “A tutorial survey of job-shop scheduling

problems using genetic algorithms, part II: hybrid genetic search strategies” Computers & Industrial

Engineering, Volume 36, Issue 2, April 1999, Pages 343-364.
28. S. D. Müller, J. Marchetto, S. Airaghi, and P. Koumoutsakos, “Optimization based on bacterial

chemotaxis,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 16–29, 2002.

29. Satellite Heat Pipe Design: Geem, Z. W. and Hwangbo, H. “Application of Harmony Search to
Multi-Objective Optimization for Satellite Heat Pipe Design”, Proceedings of US-Korea Conference

on

Science, Technology, & Entrepreneurship (UKC 2006), CD-ROM, Teaneck, NJ, USA, Aug. 10-13

2006.
30. Siddharth Pal, Anniruddha Basak and Swagatam Das “A Invasive Weed Optimization method based

Multi-user detection for MC-CDMA Interference suppression over multiple-path fading channel ” 978-

422-6588-0/10/&25.00, IEEE,2010
31. Xueni Qiu · Henry Y. K. Lau, “An AIS-based hybrid algorithm for static job shop scheduling problem”

Journal of Intelligent Manufacturing, 2019.

